The generator matrix 1 0 1 1 1 X^2+X 1 1 X+2 1 1 X^2+2 1 1 1 1 1 1 1 1 1 1 0 1 0 1 X+1 X^2+X X^2+1 1 X^2+2 X^2+X+3 1 X+2 3 1 0 X^2+X X+1 X^2+1 X^2+2 X+2 X^2+X+3 3 2 X^2+X+2 2 X^2+2 0 0 2 2 0 2 2 0 0 0 2 2 2 0 0 2 0 2 2 0 2 0 2 0 generates a code of length 24 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 22. Homogenous weight enumerator: w(x)=1x^0+70x^22+180x^23+119x^24+24x^25+56x^26+52x^27+8x^28+1x^30+1x^38 The gray image is a code over GF(2) with n=192, k=9 and d=88. This code was found by Heurico 1.16 in -3.24e-008 seconds.